Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 898
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38744687

RESUMO

Three-dimensional (3D) vector magnetic sensors play a significant role in a variety of industries, especially in the automotive industry, which enables the control of precise position, angle, and rotation of motion elements. Traditional 3D magnetic sensors integrate multiple sensors with their sensing orientations along the three coordinate axes, leading to a large size and inevitable nonorthogonal misalignment. Here, we demonstrate a wide linearity range 3D magnetic sensor utilizing a single L10-FePt Hall-bar device, whose sensitivity is 291 VA-1 T-1 in the z-axis and 27 VA-1 T-1 in the in-plane axis. Based on the spin-orbit torque-dominated magnetization reversal, the linear response of anomalous Hall resistance within a large linear range (±200 Oe) for the x, y, and z components of magnetic fields has been obtained, respectively. Typically, it exhibits a relatively lower magnetic noise level of 7.9 nV at 1 Hz than previous results, improving measurement resolution at the low frequency. Furthermore, we provide a straightforward approach for noncontact angular position detection based on a single Hall-bar device, which shows great potential for application in rotational motion control.

2.
Plant Cell Environ ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738504

RESUMO

Plants synthesise a vast array of volatile organic compounds (VOCs), which serve as chemical defence and communication agents in their interactions with insect herbivores. Although nitrogen (N) is a critical resource in the production of plant metabolites, its regulatory effects on defensive VOCs remain largely unknown. Here, we investigated the effect of N content in tomato (Solanum lycopersicum) on the tobacco cutworm (Spodoptera litura), a notorious agricultural pest, using biochemical and molecular experiments in combination with insect behavioural and performance analyses. We observed that on tomato leaves with different N contents, S. litura showed distinct feeding preference and growth and developmental performance. Particularly, metabolomics profiling revealed that limited N availability conferred resistance upon tomato plants to S. litura is likely associated with the biosynthesis and emission of the volatile metabolite α-humulene as a repellent. Moreover, exogenous application of α-humulene on tomato leaves elicited a significant repellent response against herbivores. Thus, our findings unravel the key factors involved in N-mediated plant defence against insect herbivores and pave the way for innovation of N management to improve the plant defence responses to facilitate pest control strategies within agroecosystems.

3.
Int J Oral Sci ; 16(1): 32, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627388

RESUMO

Malocclusion, identified by the World Health Organization (WHO) as one of three major oral diseases, profoundly impacts the dental-maxillofacial functions, facial esthetics, and long-term development of ~260 million children in China. Beyond its physical manifestations, malocclusion also significantly influences the psycho-social well-being of these children. Timely intervention in malocclusion can foster an environment conducive to dental-maxillofacial development and substantially decrease the incidence of malocclusion or reduce the severity and complexity of malocclusion in the permanent dentition, by mitigating the negative impact of abnormal environmental influences on the growth. Early orthodontic treatment encompasses accurate identification and treatment of dental and maxillofacial morphological and functional abnormalities during various stages of dental-maxillofacial development, ranging from fetal stages to the early permanent dentition phase. From an economic and societal standpoint, the urgency for effective early orthodontic treatments for malocclusions in childhood cannot be overstated, underlining its profound practical and social importance. This consensus paper discusses the characteristics and the detrimental effects of malocclusion in children, emphasizing critical need for early treatment. It elaborates on corresponding core principles and fundamental approaches in early orthodontics, proposing comprehensive guidance for preventive and interceptive orthodontic treatment, serving as a reference for clinicians engaged in early orthodontic treatment.


Assuntos
Má Oclusão , Humanos , Criança , Consenso , Má Oclusão/epidemiologia , Assistência Odontológica , China
4.
Stem Cells Int ; 2024: 5388064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633381

RESUMO

Objectives: Traditional Chinese medicine Cortex Eucommiae has been used to treat bone fracture for hundreds of years, which exerts a significant improvement in fracture healing. Aucubin, a derivative isolated from Cortex Eucommiae, has been demonstrated to possess anti-inflammatory, immunoregulatory, and antioxidative potential. In the present study, our aim was to explore its function in bone regeneration and elucidate the underlying mechanism. Materials and Methods: The effects of Aucubin on osteoblast and osteoclast were examined in mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) and RAW 264.7 cells, respectively. Moreover, the lncRNA H19 and Wnt/ß-catenin signaling were detected by qPCR examination, western blotting, and luciferase activity assays. Using the femur fracture mice model, the in vivo effect of Aucubin on bone formation was monitored by X-ray, micro-CT, histomorphometry, and immunohistochemistry staining. Results: In the present study, Aucubin was found to significantly promote osteogenic differentiation in vitro and stimulated bone formation in vivo. Regarding to the underlying mechanism, H19 was found to be obviously upregulated by Aucubin in MSCs and thus induced the activation of Wnt/ß-catenin signaling. Moreover, H19 knockdown partially reversed the Aucubin-induced osteogenic differentiation and successfully suppressed the activation of Wnt/ß-catenin signaling. We therefore suggested that Aucubin induced the activation of Wnt/ß-catenin signaling through promoting H19 expression. Conclusion: Our results demonstrated that Aucubin promoted osteogenesis in vitro and facilitated fracture healing in vivo through the H19-Wnt/ß-catenin regulatory axis.

5.
Adv Healthc Mater ; : e2400150, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663034

RESUMO

Angiogenesis is a prominent component during the highly regulated process of wound healing. The application of exogenous vascular endothelial growth factor (VEGF) has shown considerable potential in facilitating angiogenesis. However, its effectiveness is often curtailed due to chronic inflammation and severe oxidative stress in diabetic wounds. Herein, an inflammation-responsive hydrogel incorporating Prussian blue nanoparticles (PBNPs) is designed to augment the angiogenic efficacy of VEGF. Specifically, the rapid release of PBNPs from the hydrogel under inflammatory conditions effectively alleviates the oxidative stress of the wound, therefore reprogramming the immune microenvironment to preserve the bioactivity of VEGF for enhanced angiogenesis. In vitro and in vivo studies reveal that the PBNPs and VEGF co-loaded hydrogel is biocompatible and possesses effective anti-inflammatory properties, thereby facilitating angiogenesis to accelerate the wound healing process in a type 2 diabetic mouse model.

6.
Biomed Pharmacother ; 174: 116518, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565057

RESUMO

BACKGROUND: The Calcium-sensing receptor (CaSR) participates in the regulation of gastrointestinal (GI) motility under normal conditions and might be involved in the regulation of GI dysmotility in patients with Parkinson's disease (PD). METHODS: CaSR antagonist-NPS-2143 was applied in in vivo and ex vivo experiments to study the effect and underlying mechanisms of CaSR inhibition on GI dysmotility in the MPTP-induced PD mouse model. FINDINGS: Oral intake of NPS-2143 promoted GI motility in PD mice as shown by the increased gastric emptying rate and shortened whole gut transit time together with improved weight and water content in the feces of PD mice, and the lack of influence on normal mice. Meanwhile, the number of cholinergic neurons, the proportion of serotonergic neurons, as well as the levels of acetylcholine and serotonin increased, but the numbers of nitrergic and tyrosine hydroxylase immunoreactive neurons, and the levels of nitric oxide synthase and dopamine decreased in the myenteric plexus in the gastric antrum and colon of PD mice in response to NPS-2143 treatment. Furthermore, the numbers of c-fos positive neurons in the nucleus tractus solitarius (NTS) and cholinergic neurons in the dorsal motor nucleus of the vagus (DMV) increased in NPS-2143 treated PD mice, suggesting the involvement of both the enteric (ENS) and central (CNS) nervous systems. However, ex vivo results showed that NPS-2143 directly inhibited the contractility of antral and colonic strips in PD mice via a non-ENS mediated mechanism. Further studies revealed that NPS-2143 directly inhibited the voltage gated Ca2+ channels, which might, at least in part, explain its direct inhibitory effects on the GI muscle strips. INTERPRETATION: CaSR inhibition by its antagonist ameliorated GI dysmotility in PD mice via coordinated neuronal regulation by both ENS and CNS in vivo, although the direct effects of CaSR inhibition on GI muscle strips were suppressive.


Assuntos
Modelos Animais de Doenças , Motilidade Gastrointestinal , Camundongos Endogâmicos C57BL , Naftalenos , Receptores de Detecção de Cálcio , Animais , Receptores de Detecção de Cálcio/antagonistas & inibidores , Receptores de Detecção de Cálcio/metabolismo , Motilidade Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Esvaziamento Gástrico/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia
7.
Fitoterapia ; 175: 105908, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38479621

RESUMO

Three undescribed sesquiterpenes, designed as pichinenoid A-C (1-3), along with nine known ones (4-12) were isolated from the stems and leaves of Picrasma chinensis. The new isolates including their absolute configurations were elucidated based on extensive spectroscopic methods, single crystal X-ray diffraction, and electronic circular dichroism (ECD) experiments, as well as comparison with literature data. Structurally, compounds 1 and 2 are descending sesquiterpenes, while pichinenoid C (3) is a rare sesquiterpene bearing a 2-methylenebut-3-enoic acid moiety at the C-6 side chain. All the isolated compounds were tested for their neuroprotective effects against the H2O2-induced damage on human neuroblastoma SH-SY5Y cells, and most of them showed moderate neuroprotective activity. Especially, compounds 1, 3-5, and 7 showed a potent neuroprotective effect at 25 or 50 µM. Moreover, the neuroprotective effects of compounds 1 and 4 were tested on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Results of western blot and immunofluorescence indicated that compound 4 significantly counteract the toxicity of MPTP, and reversed the expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and striatum (ST) of the mouse brain. Interestingly, western blot data suggested compound 4 also enhanced B-cell lymphoma-2 (Bcl-2) and heme oxygenase 1 (HO-1) expressions in the brain tissues from MPTP damaged mouse.

8.
J Fish Biol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509782

RESUMO

Tumor necrosis factor α1 (TNFα) is a pleiotropic cytokine involved in immune regulation and cellular homeostasis, but the crucial role of TNFα in fish gut remained unclear. The current study aimed to evaluate the immunoregulatory function of TNFα1 on gut barrier in a novel hybrid fish (WR), which was produced by crossing white crucian carp (Carassius cuvieri, ♀) with red crucian carp (Carassius auratus red var, ♂). In this study, WR-tnfα1 sequence was identified, and a high-level expression was detected in the intestine. Elevated levels of WR-tnfα1 expressions were detected in immune-related tissues and cultured fish cells on stimulation. The appearance of vacuolization and submucosal rupture was observed in TNFα1-treated midgut of WR, along with elevated levels of goblet cell atrophy, whereas no significant changes were detected in most expressions of tight-junction genes and mucin genes. In contrast, WR receiving gut perfusion with WR-TNFα1 showed a remarkable decrease in antioxidant status in midgut, whereas the expression levels of apoptotic genes and redox responsive genes increased sharply. These results suggested that TNFα1 could exhibit a detrimental effect on antioxidant defense and immune regulation in the midgut of WR.

9.
Ann Clin Lab Sci ; 54(1): 92-100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38514069

RESUMO

OBJECTIVE: As an immune/inflammatory indicator, the application of monocyte-lymphocyte ratio (MLR) in the treatment of severe burns is lacking. The aim of this study was to investigate the dynamic changes of the MLR value in the early stage of severe burns and its clinical value. METHODS: This is a 5-year retrospective cohort study involving 100 patients with severe burns (II-III degree and total body surface area (TBSA) >50%), in which the lymphocyte count, monocyte count, MLR value, C-reactive protein (CRP), creatinine (Scr), and capillary leakage index (CLI) were evaluated soon after injury, and 30-day mortality rates were investigated. RESULTS: The MLR values in non-survivors with severe burns were higher than those in survivors in the first two days after injury, while the values on the 3rd, 5th, 6th and 7th day after injury were lower than those in survivors. The differences between the 6th and 7th days after injury were statistically significant. According to the results of logistic and Cox regression analysis, the MLR values on the 6th day after injury were independent predictors of mortality, and the area under the ROC curve of the 6th day MLR for severe burn-delayed death prediction was 0.658 (95% confidence interval, 0.541-0.774), and the optimal cut-off value was 0.991. The 30-day mortality rates differed significantly between the MLR6 ≥0.991 group and the MLR6≤0.991 group (P<0.05). Within one week after injury, the MLR values were negatively correlated with Scr, CRP and CLI levels for severe burns. CONCLUSIONS: Our results revealed the dynamic characteristics of the MLR value in the early stage of severe burns, reflecting important changes in the immune/inflammatory related stress response soon after injury, low MLR level was associated with the worsening of disease condition.


Assuntos
Queimaduras , Monócitos , Humanos , Estudos Retrospectivos , Linfócitos , Contagem de Leucócitos , Prognóstico
10.
J Phys Chem Lett ; 15(12): 3470-3477, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38512331

RESUMO

The photosystem of filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii comprises a light-harvesting (LH) complex encircling a reaction center (RC), which intensely absorbs blue-green light by carotenoid (Car) and near-infrared light by bacteriochlorophyll (BChl). To explore the influence of light quality (color) on the photosynthetic activity, we compared the pigment compositions and triplet excitation dynamics of the LH-RCs from Rfl. castenholzii was adapted to blue-green light (bg-LH-RC) and to near-infrared light (nir-LH-RC). Both LH-RCs bind γ-carotene derivatives; however, compared to that of nir-LH-RC (12%), bg-LH-RC contains substantially higher keto-γ-carotene content (43%) and shows considerably faster BChl-to-Car triplet excitation transfer (10.9 ns vs 15.0 ns). For bg-LH-RC, but not nir-LH-RC, selective photoexcitation of Car and the 800 nm-absorbing BChl led to Car-to-Car triplet transfer and BChl-Car singlet fission reactions, respectively. The unique excitation dynamics of bg-LH-RC enhances its photoprotection, which is crucial for the survival of aquatic anoxygenic phototrophs from photooxidative stress.


Assuntos
Chloroflexi , Chloroflexi/química , Chloroflexi/metabolismo , Carotenoides , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Bacterioclorofilas/metabolismo , Proteínas de Bactérias/química
11.
Curr Med Sci ; 44(2): 380-390, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38517675

RESUMO

OBJECTIVE: A novel technique was explored using an airbag-selective portal vein blood arrester that circumvents the need for an intraoperative assessment of anatomical variations in patients with complex intrahepatic space-occupying lesions. METHODS: Rabbits undergoing hepatectomy were randomly assigned to 4 groups: intermittent portal triad clamping (PTC), intermittent portal vein clamping (PVC), intermittent portal vein blocker with an airbag-selective portal vein blood arrester (APC), and without portal blood occlusion (control). Hepatic ischemia and reperfusion injury were assessed by measuring the 7-day survival rate, blood loss, liver function, hepatic pathology, hepatic inflammatory cytokine infiltration, hepatic malondialdehyde levels, and proliferating cell nuclear antigen levels. RESULTS: Liver damage was substantially reduced in the APC and PVC groups. The APC animals exhibited transaminase levels similar to or less oxidative stress damage and inflammatory hepatocellular injury compared to those exhibited by the PVC animals. Bleeding was significantly higher in the control group than in the other groups. The APC group had less bleeding than the PVC group because of the avoidance of portal vein skeletonization during hepatectomy. Thus, more operative time was saved in the APC group than in the PVC group. Moreover, the total 7-day survival rate in the APC group was higher than that in the PTC group. CONCLUSION: Airbag-selective portal vein blood arresters may help protect against hepatic ischemia and reperfusion injury in rabbits undergoing partial hepatectomy. This technique may also help prevent liver damage in patients requiring hepatectomy.


Assuntos
Air Bags , Traumatismo por Reperfusão , Humanos , Animais , Coelhos , Hepatectomia/efeitos adversos , Hepatectomia/métodos , Veia Porta/cirurgia , Constrição , Fígado/patologia , Isquemia/patologia , Traumatismo por Reperfusão/prevenção & controle
12.
J Health Popul Nutr ; 43(1): 39, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449053

RESUMO

Bacterial drug resistance monitoring in hospitals is a crucial aspect of healthcare management and a growing concern worldwide. In this study, we analysed the bacterial drug resistance surveillance in our hospital from 2022 Q1 to 2023 Q2. The main sampling sources were respiratory, blood, and urine-based, and the main clinical infections were respiratory and genitourinary in nature. Specimens were inoculated and cultured; bacterial strains were isolated using a VITEK® 2 Compact 60-card automatic microorganism identifier (bioMerieux, Paris, France) and their matching identification cards were identified, and manual tests were supplemented for strain identification. The most common Gram-positive bacteria detected were Staphylococcus aureus, followed by Enterococcus faecalis (E. faecalis), Staphylococcus epidermidis (S. epidermidis), and Staphylococcus haemolyticus (S. haemolyticus). The most common Gram-negative bacteria detected were Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The most prevalent multidrug-resistant bacteria were those producing extended-spectrum beta-lactamases, followed by methicillin-resistant Staphylococcus aureus, followed by carbapenem-resistant Enterobacterales. This study suggests that the prevention and control of infections in the respiratory and genitourinary systems should be the focus of anti-infective work and that the use of antimicrobials should be reduced and regulated to prevent the emergence and spread of resistant bacteria.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Departamentos Hospitalares , China/epidemiologia , Escherichia coli
13.
Stem Cell Rev Rep ; 20(4): 1093-1105, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457059

RESUMO

Breast cancer, the most prevalent malignancy in women, often progresses to bone metastases, especially in older individuals. Dormancy, a critical aspect of bone-metastasized breast cancer cells (BCCs), enables them to evade treatment and recur. This dormant state is regulated by bone marrow mesenchymal stem cells (BMMSCs) through the secretion of various factors, including those associated with senescence. However, the specific mechanisms by which BMMSCs induce dormancy in BCCs remain unclear. To address this gap, a bone-specific senescence-accelerated murine model, SAMP6, was utilized to minimize confounding systemic age-related factors. Confirming senescence-accelerated osteoporosis, distinct BMMSC phenotypes were observed in SAMP6 mice compared to SAMR1 counterparts. Notably, SAMP6-BMMSCs exhibited premature senescence primarily due to telomerase activity loss and activation of the p21 signaling pathway. Furthermore, the effects of conditioned medium (CM) derived from SAMP6-BMMSCs versus SAMR1-BMMSCs on BCC proliferation were examined. Intriguingly, only CM from SAMP6-BMMSCs inhibited BCC proliferation by upregulating p21 expression in both MCF-7 and MDA-MB-231 cells. These findings suggest that the senescence-associated secretory phenotype (SASP) of BMMSCs suppresses BCC viability by inducing p21, a pivotal cell cycle inhibitor and tumor suppressor. This highlights a heightened susceptibility of BCCs to dormancy in a senescent microenvironment, potentially contributing to the increased incidence of breast cancer bone metastasis and recurrence observed with aging.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , Fenótipo Secretor Associado à Senescência , Células-Tronco Mesenquimais/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Humanos , Animais , Camundongos , Proliferação de Células , Sobrevivência Celular , Senescência Celular , Meios de Cultivo Condicionados/farmacologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Células MCF-7
14.
Br J Cancer ; 130(9): 1517-1528, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38459187

RESUMO

BACKGROUND: Circß-catenin, our first reported circRNA, has been reported to mediate tumorigenesis in various cancers. However, its biological functions and underlying mechanisms in colorectal cancer (CRC) remain unknown. METHODS: The qRT-PCR examination was used to detect the expression of circß-catenin, miR-197-3p, and CTNND1 in cells and human tissues. Western blot was conducted to detect the protein expression levels. The biological function of circß-catenin was verified by MTT, colony formation, wound healing, and transwell assays. The in vivo effects of circß-catenin were verified by nude mice xenograft and metastasis models. The regulatory network of circß-catenin/miR-197-3p/CTNND1 was confirmed via dual-luciferase reporter and RIP assays. RESULTS: In the present study, circß-catenin was found to promote CRC cell proliferation and metastasis in vitro and in vivo. Mechanistically, circß-catenin served as miRNA decoy to directly bind to miR-197-3p, then antagonized the repression of the target gene CTNND1, and eventually promoted the malignant phenotype of CRC. More interestingly, the inverted repeated Alu pairs termed AluJb1/2 and AluY facilitated the biogenesis of circß-catenin, which could be partially reversed by EIF4A3 binding to Alu element AluJb2. CONCLUSIONS: Our findings illustrated a novel mechanism of circß-catenin in modulating CRC tumorigenesis and metastasis, which provides a potential therapeutic target for CRC patients.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Progressão da Doença , Fator de Iniciação 4A em Eucariotos , Camundongos Nus , MicroRNAs , RNA Circular , beta Catenina , MicroRNAs/genética , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , RNA Circular/genética , Animais , Camundongos , beta Catenina/metabolismo , beta Catenina/genética , Proliferação de Células/genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , delta Catenina , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Masculino , Feminino , Movimento Celular/genética , Camundongos Endogâmicos BALB C
15.
J Neuroimmune Pharmacol ; 19(1): 4, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305948

RESUMO

Inflammation plays an important role in the pathogenesis of depression; however, the underlying mechanisms remain unclear. Apart from the disordered circadian rhythm in animal models and patients with depression, dysfunction of clock genes has been reported to be involved with the progress of inflammation. This study aimed to investigate the role of circadian clock genes, especially brain and muscle ARNT-like 1 (Bmal1), in the linkage between inflammation and depression. Lipopolysaccharide (LPS)-challenged rats and BV2 cells were used in the present study. Four intraperitoneal LPS injections of 0.5 mg/kg were administered once every other day to the rats, and BV2 cells were challenged with LPS for 24 h at the working concentration of 1 mg/L, with or without the suppression of Bmal1 via small interfering RNA. The results showed that LPS could successfully induce depression-like behaviors and an "inflammatory storm" in rats, as indicated by the increased immobility time in the forced swimming test and the decreased saccharin preference index in the saccharin preference test, together with hyperactivity of the hypothalamic-pituitary-adrenal axis, hyperactivation of astrocyte and microglia, and increased peripheral and central abundance of tumor necrosis factor-α, interleukin 6, and C-reactive protein. Moreover, the protein expression levels of brain-derived neurotrophic factor, triggering receptor expressed on myeloid cells 1, Copine6, and Synaptotagmin1 (Syt-1) decreased in the hippocampus and hypothalamus, whereas the expression of triggering receptor expressed on myeloid cells 2 increased. Interestingly, the fluctuation of temperature and serum concentration of melatonin and corticosterone was significantly different between the groups. Furthermore, protein expression levels of the circadian locomotor output cycles kaput, cryptochrome 2, and period 2 was significantly reduced in the hippocampus of LPS-challenged rats, whereas Bmal1 expression was significantly increased in the hippocampus but decreased in the hypothalamus, where it was co-located with neurons, microglia, and astrocytes. Consistently, apart from the reduced cell viability and increased phagocytic ability, LPS-challenged BV2 cells presented a similar trend with the changed protein expression in the hippocampus of the LPS model rats. However, the pathological changes in BV2 cells induced by LPS were reversed after the suppression of Bmal1. These results indicated that LPS could induce depression-like pathological changes, and the underlying mechanism might be partly associated with the imbalanced expression of Bmal1 and its regulated dysfunction of the circadian rhythm.


Assuntos
Depressão , Lipopolissacarídeos , Animais , Ratos , Depressão/induzido quimicamente , Hipocampo , Sistema Hipotálamo-Hipofisário/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Músculos/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-38412702

RESUMO

This study compares the skin structures of Rana kukunoris with two different skin colors living in the same area of Haibei in the Northeastern Qinghai-Tibet Plateau. The skin thickness of the khaki R. kukunoris was significantly greater than that of the brown R. kukunoris (P < 0.01), and significantly more mucous and granular glands were present on the dorsal skin of the khaki frog (P < 0.05). Meanwhile, the melanocytes on the dorsal skin of the brown frog were significantly larger than those on the khaki one (P < 0.05). Morphological changes in the expansion and aggregation of melanocytes seemed to deepen the skin color of R. kukunoris. Moreover, transcriptome sequencing identified tyrosine metabolism, melanogenesis, and riboflavin metabolism as the main pathways involved in melanin formation and metabolism in brown R. kukunoris. TYR, MC1R was upregulated as the skin color of R. kukunoris was deepened and contributed to melanin production and metabolism. In contrast, the khaki frog had significantly more upregulated genes and metabolic pathways related to autoimmunity. The khaki frog appeared to defend against ultraviolet (UV) radiation-induced damage by secreting mucus and small molecular peptides, whereas the brown frog protected itself by distributing a large amount of melanin. Hence, the different skin colors of R. kukunoris might represent different adaptation strategies for survival in the intense UV radiation environment of the Qinghai-Tibet Plateau.

17.
Nature ; 627(8003): 347-357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374256

RESUMO

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Assuntos
Diabetes Mellitus Tipo 2 , Progressão da Doença , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Adipócitos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/classificação , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/genética , Células Endoteliais/metabolismo , Células Enteroendócrinas , Epigenômica , Predisposição Genética para Doença/genética , Ilhotas Pancreáticas/metabolismo , Herança Multifatorial/genética , Doença Arterial Periférica/complicações , Doença Arterial Periférica/genética , Análise de Célula Única
18.
Ren Fail ; 46(1): 2313171, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38345000

RESUMO

Acute kidney injury (AKI) is a prevalent and serious condition in the intensive care unit (ICU), associated with significant morbidity and mortality. Septic acute kidney injury (SAKI) contributes substantially to AKI cases in the ICU. However, current diagnostic methods have limitations, necessitating the exploration of novel biomarkers. In this study, we investigated the potential of plasma and urine CCL2 levels as diagnostic markers for AKI and SAKI in 216 ICU patients. Our findings revealed significant differences in plasma (p < 0.01) and urine CCL2 (p < 0.0001) levels between AKI and non-AKI patients in the ICU. Notably, urine CCL2 demonstrated promising predictive value for AKI, exhibiting high specificity and sensitivity (AUC = 0.8976; p < 0.0001). Furthermore, we observed higher urine CCL2 levels in SAKI compared to non-septic AKI (p < 0.001) and urine CCL2 could also differentiate SAKI from non-septic AKI (AUC = 0.7597; p < 0.0001). These results suggest that urine CCL2 levels hold promise as early biomarkers for AKI and SAKI, offering valuable insights for timely intervention and improved management of ICU patients.


Assuntos
Injúria Renal Aguda , Sepse , Humanos , Sepse/diagnóstico , Sepse/complicações , Biomarcadores , Cuidados Críticos , Unidades de Terapia Intensiva , Quimiocina CCL2
19.
J Chem Ecol ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372833

RESUMO

The melon fly, Zeugodacus cucurbitae (Coquillett), is a major invasive pest, widely distributed in the Asia-Pacific region and some parts of Africa. Melon fly attractants could improve the effectiveness of current pest management measures. Previous studies have shown that some host fruits are attractive to melon flies but few have investigated the chemical compounds responsible for their attraction. In this study, we aimed to identify the volatile compounds from Luffa acutangula L that attract Z. cucurbitae. In headspace trapping, chemical profiling identified 19 compounds from ridge gourds, with 1-pentadecene being the major component. EAG results revealed that seven compounds elicited antennal responses in Z. cucurbitae, and significant differences in antennal responses between male and female Z. cucurbitae adults were recorded to p-xylene, alpha-pinene, and 1-octadecene. Behavioral experiments demonstrated that the EAG-active compounds methyl isovalerate and methyl myristate had either attractive or repellent effects on Z. cucurbitae at different concentrations, and 1-octadecene attracted Z. cucurbitae. Our findings provide a theoretical basis producing repellents or attractants for effective Integrated Pest Management of Z. cucurbitae.

20.
J Appl Toxicol ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311468

RESUMO

Although the medicinal properties of colchicine (COL) have been widely known for centuries, its toxicity has been the subject of controversy. The narrow therapeutic window causes COL to induce gastrointestinal adverse effects even when taken at recommended doses, mainly manifested as nausea, vomiting, and diarrhea. However, the mechanism of COL-induced gastrointestinal toxic reactions remains obscure. In the present study, the mice were dosed with COL (2.5 mg/kg b.w./day) for a week to explore the effect of COL on bile acid metabolism and the mechanism of COL-induced diarrhea. The results showed that COL treatment affected liver biochemistry in mice, resulting in a significant down-regulation of the mRNA expression levels of bile acid biosynthesis regulators Cyp7a1, Cyp8b1, Cyp7b1, and Cyp27a1 in liver tissues. The mRNA expression levels of bile acid transporters Ntcp, Oatp1, Mrp2, Ibabp, Mrp3, Osta, and Ostb in liver and ileum tissues were also significantly down-regulated. In addition, COL treatment significantly inhibited the mRNA expression levels of Fxr and its downstream target genes Shp, Lrh1, and Fgf15 in liver and ileum tissues, affecting the feedback regulation of bile acid biosynthesis. More importantly, the inhibition of COL on bile acid transporters in ileal and hepatic tissues affected bile acid recycling in the ileum as well as their reuptake in the liver, leading to a significantly increased accumulation of bile acids in the colon, which may be an important cause of diarrhea. In conclusion, our study revealed that COL treatment affected bile acid biosynthesis and enterohepatic circulation, thereby disrupting bile acid metabolic homeostasis in mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...